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Abstract
Bacterial colonization of the gut shapes both the local 
and the systemic immune response and is implicated 
in the modulation of immunity in both healthy and 
disease states. Recently, quantitative and qualitative 
changes in the composition of the gut microbiota have 
been detected in Crohn’s disease and ulcerative colitis, 
reinforcing the hypothesis of dysbiosis as a relevant 
mechanism underlying inflammatory bowel disease 
(IBD) pathogenesis. Humans and microbes have co-
existed and co-evolved for a long time in a mutually 
beneficial symbiotic association essential for maintaining 
homeostasis. However, the microbiome is dynamic, 
changing with age and in response to environmental 
modifications. Among such environmental factors, 
food and alimentary habits, progressively altered in 
modern societies, appear to be critical modulators 
of the microbiota, contributing to or co-participating 
in dysbiosis. In addition, food constituents such as 
micronutrients are important regulators of mucosal 
immunity, with direct or indirect effects on the gut 
microbiota. Moreover, food constituents have recently 
been shown to modulate epigenetic mechanisms, which 
can result in increased risk for the development and 
progression of IBD. Therefore, it is likely that a better 
understanding of the role of different food components 
in intestinal homeostasis and the resident microbiota 
will be essential for unravelling the complex molecular 
basis of the epigenetic, genetic and environment 
interactions underlying IBD pathogenesis as well as for 
offering dietary interventions with minimal side effects.
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Core tip: The gut microbiota has a recognized role 
in immunity, and changes in its composition, or 
dysbiosis, may be the basis for the worldwide increased 
incidence of inflammatory bowel disease (IBD). Dietary 
constituents have been shown to affect the immune 
response and the inflammatory status, in great part 
mediated through the modulation of the microbiota. 
Environmental compounds, including nutrients, 
can induce alterations in the epigenome interface, 
resulting in long lasting phenotypic or even tissue 
structure and function modifications. Unravelling the 
complex molecular basis of the epigenetic, genetic and 
environmental interactions underlying IBD pathogenesis 
will have implications for the development of novel 
therapies.
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INTRODUCTION
The gastrointestinal tract is relentlessly challenged 
by the luminal contents harbouring innumerable 
microorganisms and food antigens. To maintain 
the normal homeostatic equilibrium, it is critical for 
the system to be capable of identifying whether a 
stimulus is pathogenic or not and of mounting an 
appropriate response, resulting in either inflammation 
or tolerance[1]. Particularly in the context of the 
gut, defence mechanisms and tolerance should act 
in concert, allowing the organism to control the 
inflammatory response and tissue injury that may 
occur following exposure to a given pathogen[2]. 
While immune deficiency inevitably culminates in 
recurrent infections, defective tolerance may result in 
uncontrolled inflammation and immunopathology[3]. 
In fact, an abnormal relationship between host and 
microbiota is believed to result in intestinal immune 
imbalance[4], leading to the development of conditions 
such as inflammatory bowel disease (IBD), which 
consists of two major forms, Crohn’s disease (CD) 
and ulcerative colitis (UC)[5,6]. In this paper, we discuss 
basic mechanisms and potential connections between 
microbiota, diet, and the development of IBD.

INTESTINAL MICROBIOTA
A mutually beneficial association between humans 

and microbes is essential for maintaining homeostasis. 
Such co-existence highlights the predominantly 
symbiotic nature of the interaction between humans 
and microorganisms despite the remarkable variation 
that occurs over time at diverse body sites[7]. As a 
consequence, abnormalities of the intestinal microbiota 
have been implicated in the pathogenesis of several 
health conditions, including gastrointestinal diseases. 

The development and adaptation of the intestinal 
microbiota represents a continuous process that 
occurs throughout the lifetime. In this regard, several 
environmental factors contribute to the microbial 
colonization of the gastrointestinal tract. The com-
position of the intestinal microbiota is affected very 
early in life, beginning with the route of delivery[8]. 
Shortly after birth, breast-feeding, exposure to food 
and other environmental factors play a pivotal role 
in the development of the intestinal microbiota. The 
microbial composition of the gut, in turn, also shapes 
the development of both the innate and the adaptive 
immune system[9]. The commensal microbiota is 
universally distributed throughout the gastrointestinal 
tract, with a characteristic progressive increase in 
both diversity and density from the upper to the lower 
segments. Studies of the human microbiome have 
identified more than three million unique genes within 
the gut, widely outnumbering the human genome and 
containing more than a thousand bacterial species, 
most of them of the Bacteroidetes and Firmicutes 
phyla[10]. In fact, several different groups around the 
world are currently investigating the composition of 
the human microbiome. Recently, the phylogenetic 
composition of faecal samples from different nationa-
lities was investigated in a metagenomic analysis, 
which demonstrated the presence of robust bacterial 
clusters, defined as enterotypes. These enterotypes, 
mostly defined by species composition, were not 
nation- or continent-specific, supporting the idea of a 
relatively limited number of established host-microbe 
symbiotic conditions, which may behave distinctly 
upon exposure to food or drugs[11]. 

The complexity of the human gut microbiome 
is further evidenced by the spatial distribution and 
alternation of microorganisms throughout the length 
of the gastrointestinal tract and across the radial axis. 
It has been demonstrated, for example, that different 
bacteria inhabit distinct segments of the intestine 
and are found in different layers of the gut, such as 
the central lumen, associated with mucosal folds, 
or embedded in the mucus layer[12]. Together, these 
findings support the hypothesis that the resident or 
autochthonous microbiota has been modified to adapt 
to new functional specializations, therefore playing 
a distinct role compared to the transient microbiota 
present in the faecal stream. In this sense, each 
intestinal niche is thought to shelter the microbes that 
would be the most convenient to preserve local tissue 
homeostasis and exhibiting clear beneficial mutualism 
with the host[12]. 
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EFFECTS OF THE INTESTINAL 
MICROBIOTA ON IMMUNITY
Currently, it is well accepted that one of the key 
functions of the gut microbiota, in addition to nutrition, 
metabolism and energy production, consists of the 
development and maturation of the immune system[13]. 
In fact, bacterial colonization of the gut is believed to 
shape not only the local but also the systemic immune 
response, being implicated in the modulation of 
immunity in both healthy and disease states[14]. Under 
normal conditions, gastrointestinal microorganisms 
are recognized by NOD-like and Toll-like receptors, 
specialized molecules of the innate immune system 
predominantly localized in epithelial and immune cells, 
and this recognition process results in activation of the 
immune response, which is indispensable to intestinal 
homeostasis[15]. 

To maintain homeostasis, the microbiota is regulated 
by several mechanisms involving epithelial and immune 
cell molecules, including IgA, RegⅢγ, and defensins, 
whereas the immune response is reciprocally regulated 
by the microbiota, with particular microorganisms 
promoting the growth of distinct T cell subsets[16]. For 
example, commensal segmented filamentous bacteria 
were shown to induce Th17 cells[17,18] capable of 
identifying extraintestinal autoimmune inflammation 
in experimental models[19,20]. On the other hand, 
Clostridia and Bacteroides fragilis were shown to 
favour the induction of Treg cells and type 1 T helper 
(Th1) cells, respectively[16]. Of note, Clostridia were 
demonstrated to induce Tregs within the gut with 
a concomitant down-regulation of Th1 and Th17 
responses[21]. Although the exact mechanism by which 
Tregs are induced by the intestinal microbiota are 
yet to be determined, there is evidence suggesting 
a role for microbe-derived short-chain fatty acids[22]. 
Alimentary fibres are not digested by the human 
gastrointestinal tract but, instead, they are fermented 
in the gut by bacteria, which in turn modifies the gut 
microbiota. The microbial processing of fibres results in 
the formation of short-chain fatty acids (SCFAs), such 
as acetate, propionate and butyrate, which are used by 
colonocytes as crucial energy sources, with important 
anti-inflammatory activities in vitro and in vivo[23,24]. In 
particular, butyrate, produced by commensal bacteria, 
was also shown to participate in Treg differentiation 
and suppression of pro-inflammatory cytokines from 
macrophages and dendritic cells[25,26], while its in vivo 
administration was shown to ameliorate experimental 
colitis[27], suggesting the importance of specific luminal 
nutrients in the homeostasis of the colon.

In addition to the effects of the gut microbiota on 
immunity, dietary factors have also been implicated 
in gut microbial regulation of intestinal immunity. 
Therefore, diet has emerged as another critical 
element that interacts with the microbiota and 
immunity to actively affect homeostatic control[28].

DIET: INFLUENCE ON THE INTESTINAL 
MICROBIOTA
The influence of food in shaping the intestinal 
microbiota has been hypothesized for a long time. 
However, only in recent years have consistent data 
on this subject been obtained, due in particular to 
the advent of technologies such as next-generation 
DNA sequencing and metabolic profiling[29]. As a 
result, interesting new data have been reported, 
consequently shaping conceptual changes in the field. 
For example, the role of early nutrition in moulding the 
gut microbiota appears to impact the risk of diseases 
development even late in life[30,31]. Furthermore, 
it is now clear that the microbiota composition is 
dynamic, changing with age and oscillating according 
to environmental modifications, including food intake 
patterns, among other factors[32]. 

Network-based studies of microbial communities 
performed with faecal samples of several mammalian 
species have confirmed that diet does determine 
bacterial diversity, which increases from carnivore to 
omnivore to herbivore, whereas microbial communities 
diversify concomitantly with their hosts, supporting the 
hypothesis of the co-evolution of gut microbiotas and 
their hosts[33]. Although there is a general assumption 
that the typical modern human intestinal microbiota 
tends to be one of omnivorous habits, considerable 
heterogeneity still exists in the world, with some 
remarkable discrepancies. An interesting study, for 
example, demonstrated substantial differences in the 
intestinal microbiota of children living in African rural 
communities compared with children living in Europe. 
The guts of African children were rich in Bacteroidetes 
and poor in Firmicutes and Enterobacteriaceae, while 
the results obtained from European children were quite 
the opposite[34]. The investigators suggested that the 
findings were mostly attributable to radically different 
dietary patterns (Table 1). 

Following the same line of evidence, several 
other studies have raised the issue of diet potentially 
affecting the gut microbiota. Of note, animal fat-based 
diets and carbohydrate-based diets lead to a specific 
enrichment of Bacteroides and Prevotella in adult 
individuals. Moreover, it is important to highlight that 
the gut microbiome composition undergoes relatively 
rapid changes upon exposure to a low-fat/high-fibre 
or high-fat/low-fibre diet, for example[35]. In another 
short-term dietary intervention in humans, in contrast 
to the effects of a plant-based diet, consumption 
of strictly animal-based products increased the 
abundance of bile-tolerant microorganisms and 
decreased the levels of Firmicutes that metabolize 
dietary plant polysaccharides. These results reflect 
the differences between herbivorous and carnivorous 
habits, depicting specific adjustments between 
carbohydrate and protein fermentation. In particular, 
the identification of increases in the abundance 
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pro-inflammatory, whereas omega-3 fatty acids, such 
as a-linolenic acid from plants and eicosapentaenoic 
acid and docosahexaenoic acid from fish, are anti-
inflammatory[42]. 

High caloric intake with a large consumption of 
carbohydrates, typical of Western diets, has been 
associated with less microbiome diversity, in contrast to 
the Mediterranean diet based on fruits, vegetables, and 
red wine[43]. Nevertheless, recently, exclusion diets such 
as the specific carbohydrate diet (SCD, which restricts 
all carbohydrates except monosaccharides) and a diet 
low in fermentable oligo-, di-, and monosaccharides and 
polyols (FODMAPs) have produced promising results 
in IBD[44]. In uncontrolled trials of restriction diets for 
IBD, SCD-like diets were shown to reduce symptoms 
and intestinal inflammation[45,46]. These observations 
support the notion that dietary manipulations might 
modify the intestinal microbiota despite the presence 
of resident enterotypes settled by long-term dietary 
patterns.

The effects of specific nutritional changes on 
the mammalian system have been increasingly 
investigated, including the impact of micronutrients 
on the gut microbiota. For example, in weaned-mouse 
models of zinc or protein deficiency, considerable 
changes in the gut microbiota were observed, in 
addition to reductions in microbial proteolysis and 
increases in microbial dietary choline processing[47]. 
Processed foods are usually low in micronutrients and 
have been associated with a greater risk of developing 
several diseases. In this sense, zinc and other 
nutrients such as n-3 fatty acids and vitamins D and E 
are thought to protect from preclinical and/or clinical 
type 1 diabetes, for example[48].

INTESTINAL MICROBIOTA-HOST 
INTERACTIONS AND THE DEVELOPMENT 
OF IBD
In the last decade, the intestinal microbiota-host 
interaction has gained progressively increasing 
attention, as it has been associated, directly or 
indirectly, with a variety of immune, inflammatory, and 
metabolic disorders[49]. Furthermore, in recent years, 
the increase in the incidence of autoimmune and 
chronic inflammatory disorders has been attributed to 
alterations in the microbial composition and the role 
of the intestinal microbiota in immune regulation[50]. 
Modifications in human habits have been implicated in 
the rise of IBD worldwide[51]. This thought is supported 
by the evidence showing a consistent increase in the 
incidence and prevalence of IBD in Western countries 
and, more recently, in the Asia Pacific area[52]. 

The idea of “Western lifestyle factors” triggering 
intestinal inflammation appears to be reinforced 
by the dramatic increase in the incidence of IBD in 
last half century, which is likely not paralleled by 

changes in the human genome[53,54]. In this regard, 
several factors such as the improvement of general 
sanitary conditions and antibiotic usage, resulting in 
a decreased incidence of infectious diseases, coincide 
with the increase in autoimmune diseases and chronic 
inflammatory conditions, constituting the basis for the 
hygiene hypothesis[55,56]. In fact, some events likely 
related to changes in the gut microbiota appear to be 
associated with the development of IBD. For example, 
the risk of IBD has been shown to increase after an 
episode of acute gastroenteritis[57] and in children 
repeatedly treated with antibiotics[58]. IBD-associated 
genetic findings have also provided important evidence 
for the role of microorganisms in disease pathogenesis. 
Several sources of information, including genome-
wide association studies, have identified more than 
200 genetic risk loci as predisposing factors for IBD. 
Of note, several of the genetic risk alleles for IBD are 
directly associated with pathways that regulate the 
adaptive immune system, while many others are 
involved in innate immune responses or epithelial 
barrier regulation, crucial mechanisms in the defence 
against microbial invasion[59,60] (Figure 1).

Intestinal microbiota in IBD
Interestingly, abnormalities of the gut microbiota are 
present in common intestinal conditions, including 
irritable bowel syndrome, chronic idiopathic diarrhoea, 
and IBD[61-63]. In addition, recent evidence has 
suggested that the impact of the intestinal microbiota 
in disease pathogenesis can extend to other immune-
mediated conditions beyond the gut including, for 
example, type 1 diabetes, cardiovascular disease, and 
autoimmune demyelination[64-66]. 

In IBD, distinct abnormalities of the intestinal 
microbiota have been reported, including changes in 
the microbial composition, an inappropriate immune 
response towards commensal microorganisms, or 
even both[67]. In CD, for example, immune reactivity 
against microbial-derived antigens has long been 
reported, characterized by several different circulating 
serum antibodies[68-71]. Another clinically relevant 
observation to support a role for the gut microbiota 
in the inflammatory process of CD comes from 
postsurgical relapses triggered by agents present in 
the faecal stream[72]. Recently, longitudinal studies 
have provided evidence implicating dietary patterns 
as risk factors for IBD. In general, a lower risk of IBD 
has been associated with habits of consuming more 
vegetables and fruits, in contrast to a higher risk 
among people whose diet is based more on animal fats 
and sugar[73-76]. In particular, the association between 
the ingestion of fats and the development of UC has 
been most prominently related to the long-term high 
intake of trans-unsaturated fats[76], likely due to dietary 
linoleic acid, an n-6 polyunsaturated fatty acid[75]. Of 
note, dietary-fat-induced taurocholic acid, secondary 
to the intake of saturated fats from milk, was shown 
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to boost pathobiont expansion, triggering colitis in 
IL-10-deficient mice, with the induction of a pro-
inflammatory Th1 immune response[77].

Quantitative and qualitative changes in the 
composition of the gut microbiota have been 
detected in CD and in UC, reinforcing the hypothesis 
of dysbiosis as a relevant mechanism underlying 
IBD pathogenesis[78]. Changes in the composition 
of the intestinal microbiota have been reported in 
CD, for example, including an overall decreased 
diversity[79] but also an increase in Bacteroidetes and 
Proteobacteria paralleled by a decrease in Firmicutes 
abundance[80]. Additional evidence corroborating the 
role of bacteria in intestinal inflammation was the 
finding of a lower proportion of Faecalibacterium 
prausnitzii, a member of the phylum Firmicutes with 
anti-inflammatory properties, in patients with CD 
with increased risk of postoperative recurrence after 
resection for ileal disease[81]. At the species level, in 
addition to Faecalibacterium prausnitzii, several other 
butyrate-producing bacterial species, such as Blautia 
faecis, Roseburia inulinivorans, Ruminococcus torques, 
Clostridium lavalense, and Bacteroides uniformis, 
were also shown to be significantly reduced in CD 
patients[82]. Also interesting is the fact that exposure 
to antibiotics may amplify the microbial dysbiosis 
associated with CD. In particular, in a large paediatric 
cohort of new-onset CD, an increased abundance of 
bacteria including Enterobacteriaceae, Pasteurellaceae, 

Veillonellaceae, and Fusobacteriaceae and a decreased 
abundance of Erysipelotrichales, Bacteroidales, and 
Clostridiales were consistently correlated with disease 
severity[83]. The changes in microbial composition 
in CD have been further corroborated by a recent 
systematic review confirming a relative increase in 
Bacteroidetes and decrease in Firmicutes abundance. 
In particular, Enterobacteriaceae were increased, while 
Faecalibacterium prausnitzii was found at a lower 
abundance, including in patients with postoperative 
recurrence[84]. 

Abnormalities in the intestinal microbiota have 
also been detected in UC, although to a lesser degree 
compared to CD patients[85]. Nevertheless, a less 
diverse microbiota was also demonstrated in samples 
from patients with UC and, in particular, the finding 
of increased C. perfringens in faeces suggested its 
role in disease exacerbation[86]. In another study, 
investigators identified a decrease in Fusicatenibacter 
saccharivorans in patients with active UC, in contrast 
to the increase observed in patients with quiescent 
disease[87]. 

Whether dysbiosis consists of a primary or 
secondary phenomenon in IBD is a question that 
remains unanswered. There is evidence showing that 
the intestinal microbiota can be shaped by the host’s 
genotype[88,89] but also by diet, habits, history of infec-
tions, use of antibiotics or other medications, and the 
inflammatory process[14,90-92]. On the other hand, it is 
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Figure 1  Schematic model of host-microbiota interactions in the intestine. The interaction between the resident (autochthonous) microbiota and the mucosal 
immune system is highly complex and, in normal conditions, results in a tolerogenic response. In genetically predisposed individuals, a dysbiotic microbiota, fuelled 
by environmental factors, particularly dietary constituents, induces pathogenic immune recognition and responses, further compromising the epithelial barrier and 
defence mechanisms, leading to chronic inflammation, as observed in inflammatory bowel disease.
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important to call attention to the fact that dysbiosis 
alone may not be sufficient to induce IBD. 

Several defects in the inflammatory response 
against microbial agents that have been reported in 
IBD[93,94] lend support to the idea of an inadequate 
clearance of microbial-associated molecular patterns 
as an important underlying mechanism of disease[95]. 
This may be particularly relevant in CD, due to the 
well-established association of the disease with 
genetic polymorphisms of NOD2 and ATG16L1, for 
example, which result in defective autophagy and 
impaired microbial clearance[96-98]. Another important 
mechanistic association in intestinal inflammation is 
believed to occur in response to the accumulation of 
unfolded proteins in the lumen of the endoplasmic 
reticulum (ER stress), resulting in the activation of 
intracellular signal transduction pathways, known 
as the unfolded protein response (UPR). In addition 
to the relationship with autophagy, ER stress has 
been associated with intestinal inflammation and 
IBD based on studies revealing primary genetic 
alterations involving XBP1, ARG2, ORMDL3, and other 
components of the UPR[99,100]. Another example of an 
inadequate microbial recognition and control comes 
from the reduced expression of defensins, antimicrobial 
peptides produced by Paneth cells, in patients with 
NOD2 mutations, with expected implications for CD[101]. 
Individual or combined defects involving various genes 
such as NOD2, ATG16L1 and IRGM might result in 
inadequate recognition of microorganisms present in 
the intestinal lumen[102] and subsequently defective 
induction of autophagy, activation of alternate 
pathways, and modulation of adaptive immunity[103]. In 
addition to ATG16L1, polymorphisms of the immunity-
related GTPase family M (IRGM) gene, shown to be 
involved in the process of microbial control, have also 
been associated with CD[104,105]. Furthermore, the 
interaction between single nucleotide polymorphisms 
of ATG16L1 and IRGM has also been demonstrated 
in CD[106], indicating the probable integration of 
defective autophagy with mitochondrial dysfunction 
and apoptosis. Together, the knowledge accumulated 
in the last few years in the field of IBD, in addition 
to shedding light on new mechanisms, has revealed 
the multiple redundant and overlapping pathways 
underlying the disease pathogenesis. In addition, the 
information accumulated matches, in great part, the 
recent epidemiological changes in IBD distribution 
and reinforce the participation of dysbiosis in disease 
pathogenesis[56]. 

DIET, MICROBIOME AND EPIGENETIC 
CHANGES IN IBD
Environmental factors have been recognized as 
fundamental elements in the perinatal maturation 
of the immune system. In this sense, the microbial 
colonization of mucosal surfaces becomes of critical 

importance in the development and maturation of the 
mucosal immune system[107,108]. At birth, the transition 
from the sterile foetal environment is marked by 
exposure to a large number of exogenous stimuli. 
Interestingly, after natural birth, a newborn’s microbiota 
composition tends to resemble that of the maternal 
vaginal or gut microbiota, while after Caesarean 
section, the microbiota contains a considerable 
number of environmental agents[109]. The subsequent 
microbiota that establishes thereafter has an in-
creasingly diverse composition, but individualities 
are preserved and are relatively stable over time[110]. 
Among the environmental factors, food components 
contribute to the development of the immune response 
both directly and indirectly. Early in life, breast-feeding 
provides several important elements in the defence 
against pathogens, such as IgA, cytokines, growth 
factors, and high concentrations of oligosaccharides 
that foster the accumulation of lactic acid-producing 
bacteria in the gut[111]. Moreover, in terms of IBD, 
the effect of breast-feeding may prove to be more 
important than previously thought, as the results of 
a meta-analysis have suggested that it might play a 
protective role against the development of paediatric 
disease[112]. 

Several other data exist to support the participation 
of dietary elements in the definition of the microbiota 
itself and the interaction with the immune system. For 
example, Western-like diets with their ubiquitous food 
additives were shown to affect the composition and 
function of the microbiota[113]. Retinoic acid, a derivative 
of vitamin A, is important in the development of the 
neonatal immune system, for cellular and subcellular 
membrane stability and in epithelial surfaces[114], 
and in adults, where it is required for the expression 
of gut-homing molecules on immune cells, the 
induction of Tregs and IgA class switching[115]. Iron, 
an essential element in haematopoiesis, may also 
trigger inflammatory processes associated with CD 
progression, as luminal iron may directly modify 
epithelial cell function or generate a pathological milieu 
due to alterations of the intestinal microbiota[116]. 
Vitamin D induces tolerogenic dendritic cells and is 
now regarded as an important regulator of mucosal 
immunity[117]. The availability and functionality of 
vitamin D depends on both ingestion and exposure to 
sunlight with natural ultraviolet (UV) radiation. In the 
case of IBD, it has been suggested that low sunlight 
exposure constitutes a risk factor, particularly for 
CD[118,119]. This is in agreement with the notion that the 
incidence of IBD is higher in the northern hemisphere, 
where UV exposure is significantly lower[120]. Analysing 
these data together, it is rational to suggest that not 
only do early postnatal events influence the priming 
of the mucosal immune system and the immune 
response in adult life, but also that there are clearly 
innumerable other dietary-environmental intervening 
factors that might impact normal homeostasis and the 
risk of developing IBD. 
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In the last few years, epigenetic mechanisms have 
been implicated in the regulation of gene expression 
and cellular functions. The epigenome has been 
regarded as an interface between the environment and 
the genome, which plays a pivotal role in the definition 
of phenotypes and their maintenance. In this context, 
methylation of cytosine in CpG motifs has constituted 
the most extensively studied epigenetic event[121]. In 
the nucleus, DNA CpG methylation regulates gene 
expression through its effects on chromatin states and 
accessibility of factor binding sites in regulatory regions 
in gene promoters. While hypermethylation close to 
promoter regions is associated with gene silencing, 
in contrast, hypomethylation results in an opposite 
effect[122]. Recent data have reinforced the thought 
that epigenetic interactions connecting host DNA with 
environmental factors might have a key influence 
in the phenotypical expression of complex diseases 
such as IBD. This hypothesis is further supported by 
epidemiologic observations revealing the increased risk 
of developing IBD among people migrating from low to 
high incidence areas of the world[123]. Another example 
highlighting the importance of non-genetic processes 
in IBD development comes from studies showing a 
relatively high discordance rate among monozygotic 
twins[124]. 

Currently, there are indications that epigenetic 
mechanisms other than DNA methylation are 
implicated in the development of IBD, including 
the differential expression of microRNAs[125] and 
histone modifications[126]. However, most epigenetic 
modifications that have been correlated with the 
pathogenesis of IBD rely on DNA methylation 
studies[127]. One of these studies, for example, 
investigated the methylation status in the colonic 
mucosa from foetuses, control children and children 
with IBD. The analysis comparing IBD with control 
samples identified 233 differentially methylated regions 
(DMR), with a substantial overlap between paediatric 
IBD and control samples. This study supports probable 
novel physiological roles for DNA methylation in 
the human intestinal epithelium and presents data 
connecting developmentally acquired alterations in the 
DNA methylation profile to changes seen in paediatric 
IBD[128]. 

Regarding the question of whether epigenetic 
changes during development could be associated with 
a later onset of IBD, another group studied the colonic 
mucosa epigenome in association with the microbiome 
in children and adolescents. The investigators observed 
a strong connection between age-dependent and IBD-
specific DNA methylation variations, remarkably more 
consistent with UC than CD, and DMRs with decreased 
methylation during late-onset paediatric disease. Of 
note, the authors called attention to the finding that 
the genera with epigenetically plastic DMRs during 
childhood and adolescence were Roseburia and 
Streptococcus. In particular, Roseburia, butyrate-
producing bacteria, possess the potential to drive 

epigenetic changes in epithelial stem cells, since 
butyrate has been shown to be a histone deacetylase 
inhibitor[129].

Complex interactions between genotype, epige-
nome and environmental factors, leading to continuous 
remodelling of the epigenome, determine the 
phenotype of an individual. Among the environmental 
factors, food constituents emerge as important stimuli, 
which have been associated with specific epigenetic 
signatures and patterns of gene expression[130]. The 
one-carbon metabolism is dependent on dietary 
food components (e.g., choline, betaine, folate) 
that participate in biochemical pathways of DNA 
methylation and/or supply of methyl groups[131]. 
Processed food, typical of Western diets, in most cases 
are deficient in micronutrients, including selenium and 
folate, which are both implicated in the progression of 
many diseases, including increased risk of developing 
colorectal cancer[132-135]. 

DNA hypomethylation represents an important 
phenomenon in human health, as it acts as the initial 
epigenetic alteration associated with carcinogenesis[136]. 
Since DNA methylation depends on the one-carbon 
metabolism pathway, requiring the activity of enzymes 
that depend on micronutrients provided by the diet, 
it is conceivable that hypomethylation might occur 
due to the lack of methyl donors. In fact, folate 
present in the diet, not synthesized endogenously, 
acts as a donor of one-carbon moieties, critical 
elements for the synthesis and repair of DNA and 
methylation that control gene expression[137]. Folate 
deficiency, in turn, has been demonstrated to induce 
DNA hypomethylation, while its supplementation 
has been able to correct some mutations and DNA 
strand breaks[138]. However, contradictory effects 
of folate deficiency on DNA methylation also have 
been reported[139,140]. Nevertheless, the ablation of 
two receptor/carrier-mediated pathways for folate 
transport in transgenic mice was shown to increase the 
risk of developing colitis-associated colorectal cancer 
in a chemically induced IBD model[141]. On the other 
hand, controversial results based on human or animal 
studies add some uncertainty about the actual role of 
folate in preventing cancer[142-144]. 

The micronutrient selenium has also been im-
plicated in colorectal cancer susceptibility and DNA 
methylation. Selenium-deficient diets were shown 
to result in significantly hypomethylated liver and 
colon DNA in an experimental model[145]. Moreover, 
selenium-deficient diets contributed to the formation 
of more carcinogen-induced aberrant colon crypts 
in rats[138,146]. In experimental IBD, using a model of 
chemically induced colitis, selenium supplementation 
prevented tissue damage through the protection of 
the mitochondria and interfering in the expression of 
key genes responsible for inflammation[147]. In another 
model of experimental IBD, selenium deficiency 
was shown to worsen inflammation and promote 
tumour development and progression in inflammatory 
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carcinogenesis[148]. In human IBD, consistent studies 
regarding selenium and its potential impact in disease 
development are still limited. Recently, however, 
decreased serum selenium levels have been detected 
in patients with IBD[149].

Taken together, the current information available 
on dietary constituents and the potential effects on 
the epigenome is not sufficient to establish a clear 
relationship of cause and effect concerning IBD. Many 
questions remain unresolved, and it is urgent to 
address the interactions between the microbiome and 
epigenome, microbiome and diet, diet and epigenome, 
and the entire network of simultaneous, overlapping 
but also dynamic interactions that constitute the basis 
for intestinal homeostasis (Figure 2). 

DIET AND INTESTINAL MICROBIOTA: 
THERAPEUTIC IMPLICATIONS IN IBD
Currently, consistent evidence to support specific 
dietary recommendations for patients with IBD is 
lacking. Nevertheless, it is fundamental to recognize 
particularities based on the heterogeneity of the 
patients and their complaints, with the frequent and 
spontaneous associations of symptoms with dietary 
habits and specific foods. Although interventional 
and well-controlled studies of dietary manipulation 

are still required, it is agreed that the dietary intake 
should not be excessively restrictive in IBD[150]. 
However, considering the current knowledge on 
the direct effects of nutritional elements and the 
ability of food components to interact with microbial 
communities, it seems logical to continue pursuing 
dietary interventions in IBD, especially considering 
the modulatory potential of diet on the microbiota. 
On the other hand, a better comprehension of the 
complex mechanisms that underlie the interaction 
between the gut and its microbiota may clarify the 
defective relationships contributing to the development 
of diseases, such as IBD. Importantly, investigations 
of the gut-microbiota axis and the intervening 
modulating factors may unveil new mechanisms 
and, consequently, novel targets for therapeutic 
intervention[49]. The knowledge accumulated so far 
should allow exploration of the therapeutic potential 
of the intestinal microbiota in the treatment of several 
immune, metabolic and inflammatory disorders[151]. 

During the last decade, attempts to modulate the 
intestinal microbiota through the use of antibiotics, 
prebiotics, probiotics and synbiotics have represented 
a rational approach for the treatment of ubiquitous 
clinical disorders affecting the gastrointestinal 
tract[152,153]. The use of probiotics, including lactic acid 
bacteria, such as Lactobacilli and Bifidobacteria, for 
example, has been extensively studied in recent years. 

Environmental
factors

Diet

Metabolism

Epigenetic
factors

Genetically-
susceptible host

Intestinal diseases

Changes in
Gut microbiota

Altered microbiota-host
protection

and tolerance

Figure 2  Interactive biological networks are affected by environmental factors. Environmental exposures, including dietary constituents and a dysbiotic 
microbiota, affect the host’s genome and epigenome in a redundant and overlapping fashion, determining aberrant immunity and defective intestinal homeostasis, 
which lead to the development of inflammatory bowel disease.
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Lactic acid bacteria are commonly present in yogurt 
and other fermented food products, but they are also 
commercialized in dietary supplements[154]. Data from 
the results of clinical trials suggest that probiotics 
consisting of lactic acid bacteria may be effective in 
treatment of pouchitis[155] and UC[156] and to a lesser 
extent in CD[157,158]. In UC, particularly, probiotics 
containing lactic acid bacteria have generated more 
promising results, although inconsistencies between 
studies may render the data difficult to interpret[159]. 
On the other hand, in CD, only relatively weak 
evidence exists to support a role for probiotics as 
effective therapeutic tools[160]. However, a lower rate 
of recurrence after surgery among CD patients who 
received early VSL#3 suggests its potential usefulness 
but also the need for additional studies on this probiotic 
in CD[161]. Another line of investigation in the field of 
IBD therapy analyses the potential use of prebiotics, 
oligosaccharides that are metabolized into SCFAs by 
commensal bacteria of the intestinal microbiota[162]. 
Interestingly, a synergistic effect between prebiotics 
and probiotics for the treatment of CD was proposed in 
an open-label study, where more effective results were 
observed when a mix of different lactic acid bacteria 
was used in combination with the prebiotic psyllium[163]. 
However, a consequent challenge that arises is how to 
maintain those lactic acid bacteria probiotics in the gut 
of patients with IBD, as clinical relapses tend to occur 
once the probiotic has been discontinued[164]. 

Recently, in a more audacious approach, another 
probiotic therapy based on faecal transplantation 
has been under investigation. Faecal microbiota 
transplantation (FMT) therapy is a process in which 
an abnormal, pathological microbiota is replaced 
by a supposedly normal one[165]. Although this type 
of intervention may sound like a rather extreme 
form of therapy, favourable outcomes have already 
been achieved in patients with recurrent Clostridium 
difficile infection, for example[166]. In IBD, the results 
of studies investigating FMT as a potential new 
alternative therapy are still difficult to interpret, 
because of distinct study designs and the relatively 
small number of controlled trials. However, some 
preliminary information suggests that FMT may be 
useful in the treatment of IBD, as most patients have 
exhibited symptomatic relief or even remission in 
several studies[167]. In a systematic literature search 
and meta-analysis investigating clinical outcomes, 
FMT was evaluated as safe, although with variable 
efficacy in IBD[168]. In a pilot study, high rates of clinical 
improvement and remission were observed after a 
single FMT was administered to patients with refractory 
CD[169]. Using a similar approach, the same group 
also investigated the efficacy and safety of a designed 
step-up FMT strategy for steroid-dependent UC. 
Almost sixty percent of the patients achieved clinical 
improvement, and the microbiota analysis showed 
that FMT altered its composition, which became highly 
similar to that of the donor, particularly in the patients 

with successful treatment[170]. In a recent randomized 
controlled trial, FMT was shown to induce remission 
in a significantly greater percentage of patients with 
active UC compared to a placebo, with no difference 
regarding adverse events[171]. Together, these data 
support the idea that FMT might develop into a 
promising new alternative for the treatment of IBD.

It is increasingly accepted that dietary constituents 
can affect the immune response and inflammatory 
status, in great part mediated through the modulation 
of the microbiota, as previously discussed in this 
article. Here, it is worth highlighting the fact that 
environmental compounds, including nutrients, can 
modify the genome activity in a manner that, although 
not changing the DNA sequence, can produce relevant, 
stable and, possibly, transgenerational alterations in 
the phenotype[172]. In this sense, alterations to the 
epigenome interface, which can determine long lasting 
phenotypic or even tissue structure and function 
modifications, are believed to be secondary to the 
nature and potency of the environmental stimuli, 
including dietary factors, in a dynamic process[173]. 
Support for the hypothesis of epigenetic programming 
constituting a permanent and even a transgenerational 
phenomenon is derived primarily from animal models, 
including studies involving dietary methyl donors 
and cofactors such as folic acid, choline and vitamin 
B12, for example[174,175]. The mechanisms by which 
environmental stimuli can induce long-term effects and 
be transmitted across generations are still unclear, and 
a better understanding of these processes has been 
regarded as essential for possible future interventions 
in dramatically increasing diseases such as obesity and 
diabetes[176], in an approach that hopefully can also be 
translated to IBD therapy. 

In the interim, patients should be advised to pursue 
a healthier life, including a healthy diet, and avoiding 
sedentary behaviour, exposure to tobacco, pollutants 
and drugs in general. In terms of food, specifically, 
current knowledge suggests that the best approach 
relies on consuming a well-balanced diet containing 
predominantly fruits and vegetables and avoiding, as 
much as possible, processed foods and foods identified 
by the patient as prejudicial, capable of worsening 
symptoms or even triggering flares[43]. In this regard, 
for example, a high intake of red meat and processed 
meat, protein, alcoholic beverages, sulfur, and sulfate 
has been associated with an increased risk of flares in 
UC[177,178]. On the other hand, a high intake of saturated 
fat, monounsaturated fatty acids, and a higher ratio of 
omega-6:omega-3 polyunsaturated fatty acids have 
been associated with CD relapses[179,180].

The increase in and worldwide distribution of 
autoimmune and complex chronic inflammatory 
diseases such as IBD, especially in the last half-
century, strongly suggest the crucial participation of 
environmental changes. Among the environmental 
factors, food and alimentary habits, progressively 
altered in modern societies, appear to be critical 
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modulators of the microbiota, contributing to or co-
participating in dysbiosis, an important component of 
IBD pathogenesis. In addition, food components have 
also been shown to modulate epigenetic mechanisms, 
which can result in increased risk for the development 
and progression of IBD. Therefore, it seems rea-
sonable to suppose that a better understanding of 
the role of the different food components in intestinal 
homeostasis and the resident microbiota will be 
essential for unravelling the complex molecular basis 
of the epigenetic, genetic and environment interactions 
underlying IBD pathogenesis as well as for offering 
dietary interventions with minimal expected side 
effects.
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